Church-Turing thesis

The Church-Turing thesis is a logical/mathematical postulate, independently arrived at by Alan Turing and Alonzo Church, which asserts that as long as a procedure is sufficiently clear-cut and mechanical, there is some algorithmic way of solving it (such as via computation on a Turing machine). Thus, there are some processes or problems that are computable according to some set of algorithms, and other processes or problems that are not. A strong form of the Church-Turing thesis claims that all neural and psychological processes can be simulated as computational processes on a computer.