Worlds of David Darling
Encyclopedia of Science
   
Home > Encyclopedia of Science

Allais paradox





A paradox that stems from questions asked in 1951 by the French economist Maurice Allais (1911–).1 Which of these would you choose: (A) an 89% chance of receiving an unknown amount and 11% chance of $1 million; or (B) an 89% chance of an unknown amount (the same amount as in A), a 10% chance of $2.5 million, and a 1% chance of nothing? Would your choice be the same if the unknown amount were $1 million, or if it were nothing?

Most people don't like risk and so prefer the better chance of winning $1 million in option A. This choice is firm when the unknown amount is $1 million, but seems to waver as the amount falls to nothing. In the latter case, the risk-averse person favors B because there isn't much difference between 10% and 11%, but there's a big difference between $1 million and $2.5 million. Thus the choice between A and B depends on the unknown amount, even though it is the same unknown amount independent of the choice. This flies in the face of the so-called independence axiom, that rational choice between two alternatives should depend only on how those two alternatives differ. Yet, if the amounts involved in the problem are reduced to tens of dollars instead of millions of dollars, people's behavior tends to fall back in line with the axioms of rational choice. In this case, people tend to choose option B regardless of the unknown amount. Perhaps when presented with such huge numbers, people begin to calculate qualitatively. For example, if the unknown amount is $1 million the options are essentially (A) a fortune guaranteed or (B) a fortune almost guaranteed with a small chance of a bigger fortune and a tiny chance of nothing. Choice A is then rational. However, if the unknown amount is nothing, the options are (A) a small chance of a fortune ($1 million) and a large chance of nothing, and (B) a small chance of a larger fortune ($2.5 million) and a large chance of nothing. In this case, the choice of B is rational. Thus, the Allais paradox stems from our limited ability to calculate rationally with such unusual quantities.


Reference

  1. Allais, M. "Le comportement de l'homme rationnel devant le risque: Critique des postulats et axiomes de l'école américaine." Econometrica, 21: 503-546 (1953).

Related category

   • PARADOXES