## Kakeya needle problem
For some years, the answer was thought to be a deltoid. However, in 1928, the Russian mathematician Abram Besicovitch shocked the mathematical world by showing that the problem had no answer or,
to be more precise, that there was no minimum area.^{1} In 1917
Besicovitch had been working on a problem in Riemann
integration, and had reduced it to the question of existence of planar sets of measure 0, which contain a line segment in each direction. He then constructed such
a set, and published his construction in a Russian journal in 1920. Due
to the civil war and the blockade, there was hardly any communication between
Russia and the rest of the world at the time, so that Besicovitch hadn't
heard about the challenge posed by Kakeya. Several years later, after he
had left Russia and learned about the needle problem, Besicovitch modified
his original construction and was able to give the starling answer that
the area in question may be made arbitrarily small. ## Reference- Besicovitch, A. S. "On Kakeya's Problem and a Similar One."
*Math. Z.*, 27: 312-320, (1928).
## Related category• GEOMETRY | |||||||

Home • About • Copyright © The Worlds of David Darling • Encyclopedia of Alternative Energy • Contact |