quantum mechanics

Nineteenthcentury physics failed to explain certain observed phenomena – notably, the wavelengthspectrum of radiation emitted by a hot object. In the graph, curve A is the spectrum of radiation (intensities at different wavelengths) that according to theory should have been given off at a temperature of about 1,400°C (2,550°F) (the horizontal scale is in units of 10^{4}cm). Curve B is the spectrum actually observed. Note that the theoretical spectrum is completely unrealistic, predicting infinite intensity at the shortest wavelengths – a prediction known as the "ultraviolet catastrophe". The 19thcentury theory was based on the idea that the radiation was emitted by vibrating, electrically polarized entities – dipoles (1) – whose energy and frequency of vibration could in principle have any magnitude. The difficulty was resolved, around 1900, by Planck's proposal (B3) that each dipole could vibrate only at certain energies, related to its frequency (ν) by the formula E=nhν, where n is 1, 2, 3 etc. and h is a universal constant; a higherfrequency vibration (3) would thus have a higher minimum energy.

The science and mathematics that describes the behavior of nature at the
atomic and subatomic level. At the heart of quantum mechanics are two basic
concepts: 1) that every small bit of matter or energy can behave as if were
either a particle or a wave (see waveparticle
duality); and 2) that certain combinations of properties such as position
and velocity, and energy and time, can't be known with arbitrary precision.
The latter idea is encapsulated in Heisenberg's
uncertainty principle.
Quantum mechanics was developed during the 20th century when it became clear
that the existing laws of classical mechanics and electromagnetic theory
were not successfully applicable to such systems. Because quantum mechanics
treats physical events that we cannot directly perceive, it has many concepts
unknown in everyday experience. Louis de Broglie struck out from the old
quantum theory (see Max Planck
and the origins of quantum theory) when he suggested that particles
have a wavelike nature (see de
Broglie and matter waves). This wavelike nature is significant only
for very small particles such as electrons.
These ideas were developed by Erwin Schrödinger
and others into the branch of quantum mechanics called wave mechanics.
Werner Heisenberg worked along parallel
lines with a theory incorporating only observable quantities such as energy,
using matrix algebra techniques and called matrix mechanics.
Paul Dirac incorporated relativistic ideas
into quantum mechanics. Quantum electrodynamics was developed by the US physicist Richard Feynman in the 1940s.
Quote by Niels Bohr
"If somebody says that he can think about quantum physics without
becoming dizzy, that shows only that he has not understood anything
whatever about it." 
Related categories
• ATOMIC
AND NUCLEAR PHYSICS • PARTICLE
PHYSICS 