## group
An abstract and crucially important way of representing symmetry and one of the most fundamental concepts in modern algebra. Groups were brought into mathematics in the early 19th century by the radical young French student Évariste Galois as a tool to help solve one of the outstanding problems of his day: to find a formula for solving polynomial equations of order five – quintics – and higher. Galois showed, in notes scribbled down the night before he died in a duel, that no such formula exists. The reason for this is that the possible symmetries, or permutations, of the roots of fifth-degree polynomial equations are more complex than are the symmetries that can be represented by arithmetical formulas. This fact emerged from the development of the idea of a permutation group by Galois
and, independently at about the same time, by Niels Abel.
Half a century later, another Norwegian, Sophus Lie,
showed how important groups are to the whole of mathematics. The theory
of what became known as Lie groups links
the discrete structure of permutations with the continuous variation of
differential equations. Not
surprisingly, because group theory
forms a common underpinning to algebra and to geometric features such as
rotation, reflection, and symmetry, it crops up routinely in modern physics,
from the classification of elementary particles to crystallography. A group is a set whose elements are defined by a single operation. The group is called additive if
the symbol for the operation is "+" and is called multiplicative
if the symbol "·" of multiplication is used instead. But any other symbol
can be substituted for these. There is always a unique element (1, for multiplicative,
and 0, for additive, groups) that leaves elements unchanged under the defined
operation, like a + 0 = a. Also, for every element a
there exists a unique inverse b such that, for example, in the case
of the additive symbol, a + b = 0 and b + a
= 0. Most often, however, the inverse is denoted as a^{-1}.
Lastly, the group operation must be associative
as in a · (b · c) = (a · b) · c.
A group is commutative or Abelian if its
operation is symmetric, as in a + b = b + a.
Groups come in two types – finite and infinite. The symmetry group of the roots of a polynomial equation is a finite group, because there is only a limited number of permutations possible among the roots of a given polynomial. In contrast, the Lie groups that represent symmetries of solutions of differential equations are infinite because they represent continuous transformations, and continuity carries the potential of an infinite number of changes. Finite groups can be built up from combinations of smaller groups by a process analogous to multiplication. In the same way that a whole number can be written as a product of prime numbers, a finite group can be expressed as a combination of certain factors known as simple groups. Most simple groups belong to one of three
families: the cyclic groups, the alternating groups,
or the groups of Lie type. Cyclic groups consist of cyclic
permutations of a prime number of objects. Alternating groups consist of
even permutations – those formed by interchanging the positions of
two objects an even number of times. Sixteen subfamilies make up the simple
groups of Lie type, each associated with a family of infinite Lie groups.
(Confusingly, a Lie group is not a group of Lie type, since the former is
infinite and the latter is finite!) Altogether, there are 18 specific families
of finite simple groups. There are also 26 simple groups, known as sporadic
groups, that are highly irregular and fall outside these families.
Five sporadic groups were found in the 19th century by Emile Mathieu. Then
came a hiatus until the 1960s, when a suddenly a rush of new sporadics came
to light. The most remarkable of these is the so-called Monster
group, which appears to be intimately related to the structure of the
universe at the subatomic level. ## Related category• GROUPS AND GROUP THEORY | |||||||

Home • About • Copyright © The Worlds of David Darling • Encyclopedia of Alternative Energy • Contact |