## hyperbola
Of the four conic curves, the hyperbola is the one least encountered in everyday life. A rare chance to see the complete shape is when a lamp with a cylindrical or conical shade throws shadows on a nearby wall. Part of a hyperbola is produced by the liquid that climbs by capillary action between two microscope slides held vertically and almost touching. A hyperbola is the path followed by a smaller object that is traveling fast enough to escape completely from the gravitational pull of a larger object. Some comets, for example, have hyperbolic orbits (also called "open" orbits) so that, after one swing around the Sun, they head off into interstellar space never to return. It can be difficult to tell, in some cases, whether a comet's orbit is hyperbolic or is highly elliptical and, therefore, closed. In fact, one way to think of a hyperbola is as a kind of ellipse that is split in half by infinity. ## The hyperbola and the ellipseNot surprisingly, the hyperbola and the ellipse share many inverse relationships. For example, whereas the eclipse is the locus of all points whose distances from two fixed points, called foci, have a constant sum, the hyperbola is the locus of all points whose distances,r_{1} and r_{2}, from two fixed points, F_{1} and F_{2}, is a constant difference, r_{2} - r_{1} = k. If a is the distance from the origin to either of the x-intercepts of
the hyperbola, then k = 2a. Also, let the distance between
the foci, F_{2} - F_{1} = 2c.
Then the eccentricity, a measure of the flatness
of the hyperbola, is given by e = c/a. For all
hyperbolas, e > 1; the larger the value of e, the more
the hyperbola resembles two parallel lines. Just as the circle (for which e = 0) is the limiting case of the ellipse (for which 0 < e < 1), so the parabola (e = 1) is the limiting case of both the
ellipse and the hyperbola. ## Asymptotes and axesA hyperbola has two asymptotes: the never-quite-attainable limits of the curve's branches as they run away to infinity. Thetransverse
axis of the hyperbola is the line on which both foci lie and that
also intersects both vertices (turning points); the conjugate axis goes through the center and is perpendicular to the transverse axis. ## Rectangular hyperbolaArectangular hyperbola has an eccentricity of √2
(see square root of 2), asymptotes
that are mutually perpendicular, and the property that when stretched along
one or both of its asymptotes, it remains unchanged. The standard equation
of the rectangular equation is x^{2} + y^{2} = a^{2}, where a is half the distance between
the foci. ## History of the hyperbolaThe rectangular hyperbola was first studied by Menaechmus. Euclid and Aristaeus wrote about the general hyperbola but only studied one branch of it, while Apollonius was the first to study the two branches of the the hyperbola and is generally thought to have given it its present name.## How to construct a hyperbolaDraw a circle of radius about 1 inch (2½ cm). Mark a point half an inch outside the circumference. Place a set square so that the right-angled cornerA is on the circle, and one side AC passes through P. Draw the line AB. Repeat with different positions of the set square. The drawn lines will all touch a hyperbola. ## Related curvesThe pedal curve of a hyperbola with one focus as the pedal point is a circle. The pedal of a rectangular hyperbola with its center as pedal point is a lemniscate. The evolute of a hyperbola is a Lamé curve. If the center of a rectangular hyperbola is taken as the center of inversion, the rectangular hyperbola inverts to a lemniscate, while if the vertex is used as the center of inversion, the rectangular hyperbola inverts to a right strophoid. If the focus of a hyperbola is taken as the center of inversion, the hyperbola inverts to a limaçon. In this last case if the asymptotes of the hyperbola make an angle of π/3 with the axis which cuts the hyperbola then it inverts to the trisectrix of Maclaurin.## Related entry• hyperboloid## Related categories• PLANE CURVES• CELESTIAL MECHANICS | ||||||||||||

Home • About • Copyright © The Worlds of David Darling • Encyclopedia of Alternative Energy • Contact |